
Milestone Completion for the
Striped Directories subproject of the
Distributed Namespace Project of the

SFS-DEV-001 contract.

Revision History

Date Revision Author
2014-12-10 Original R. Henwood
2014-12-15 Update intro, description A. Dilger
2014-12-16 Unit/functional test list R. Henwood
2014-12-17 Corrected use of COS R. Henwood

Introduction
The Lustre* Distributed Namespace (DNE) Project seeks to increase the metadata
performance and capacity of a Lustre filesystem, allowing multiple metadata targets (MDT)
to be used on multiple metadata server (MDS) nodes concurrently. The previously
completed DNE Phase 1 Remote Directories project allows scaling aggregate filesystem
metadata performance by allowing administrators to split the namespace handling and
storage at a directory sub-tree level onto one or more additional MDTs and/or MDSes, while
maintaining in a single visible namespace on the client.

The current DNE Phase 2 Striped Directories project continues this performance scaling
effort by allowing a single Lustre directory to be stored on multiple MDTs, allowing the
performance and scalability of a single directory to increase beyond that of a single server.
In addition to implementing striped directories, functionality was added to allow migrating
parts of the namespace (inodes and directories) from one MDT to another to allow existing
filesystems to take advantage of multiple MDTs. Infrastructure was also developed for an
efficient distributed transaction mechanism that allows operations that span multiple MDTs
to be safe in the face of server or network failures.

Milestone Completion Criteria
The following milestone completion document applies to Subproject 2.2 – Striped Directories

of the Lustre Distributed Namespace Project of the OpenSFS Lustre Development contract
SFS-DEV-001 signed July 30th, 2011.

Per the contract, Implementation milestone is described as follows:

Contractor shall complete implementation and unit testing for the approved solution.
Contractor shall regularly report feature development progress including progress
metrics at project meetings and engineers shall share interim unit testing results as
they are available. OpenSFS at its discretion may request a code review. Completion
of the implementation phase shall occur when the agreed to solution has been
completed up to and including unit testing and this functionality can be demonstrated
on a test cluster. Code Reviews shall include:

a. Discussion led by Contractor engineer providing an overview of Lustre
source code changes

b. Review of any new unit test cases that were developed to test changes

* *Other names and brands maybe the property of others.

2

https://wiki.hpdd.intel.com/display/opensfs/Striped+Directories+Scope+Statement
https://wiki.hpdd.intel.com/display/opensfs/Remote+Directories+Scope+Statement

Components of Completed Implementation
The DNE Phase 2 Striped Directories implementation consists of several components that
address the scalability and usability limitations of the DNE Phase 1 project. The new
components implemented for DNE Phase 2 are described more fully in DNE Phase 2 High
Level Design but are summarized here.

Striped Directories
In order to improve performance and capacity scaling of individual directories, new
directories may be created with a layout that distributes it across two or more MDTs. The
directory layout can be different for each directory, and is stored on a master MDT object
normally residing on the same MDT where its parent directory is. The directory layout
contains the number of stripes (or shards) over which the directory is distributed, File
Identifiers (FIDs) for each directory shard, as well as the hash function for the directory.

Each client doing an operation in the directory uses the layout to hash the filename to
determine which MDT object will contain that filename, and then does operations such as
create, open, close, unlink, mkdir, etc. directly to the slave MDT for that object. No user-
visible objects are stored directly in the master MDT object. Since multiple MDTs act largely
independently for each file object, all MDTs in that directory can contribute to performance,
removing the single-MDT performance limit for large directories.

Attributes for striped directories are aggregated from all of the directory shards at access
time, much as they are for file objects striped across OSTs. During directory traversal
(readdir()) operations, the directory entries are returned to userspace interleaved in hash
offset order so that the readdir operation can be restarted if necessary, and to ensure that
all MDTs are active at all times.

Remote Operation Consistency
New with DNE Phase 2 is the ability to do remote MDT rename and link operations that
involve two or more MDTs. Unlike remote mkdir and rmdir operations that can be ordered
to avoid user-visible inconsistencies in the namespace, the link and rename operations
require compound operations to commit atomically and durably across multiple MDTs.
Remote operations are split into updates for each MDT that would result in a user-visible
inconsistency if committed separately at the time of system failure (e.g. link count too high
or low, directory without a name, or multiple names referencing the same directory).

In order to achieve consistency for remote operations, a redo log for each such operation is
sent along with the update request to all MDTs involved in that operation and is stored on

3

https://wiki.hpdd.intel.com/display/opensfs/DNE2+High+Level+Design
https://wiki.hpdd.intel.com/display/opensfs/DNE2+High+Level+Design

each MDT. The redo log contains all of the updates for all of the MDTs involved in the
operation. If an update commits on at least one of the MDTs before a system failure, then
the redo log will also be committed atomically. During recovery, the redo logs are examined
for incomplete operations, and contain enough information to redo the missing updates for
on any other MDT involved in that operation.

The redo log is only required in case at least one MDT update was committed to disk, since if
all involved MDTs crash before any updates are committed they will also be in a consistent
state. As a result, independent remote updates and redo logs can be sent and written to
disk asynchronously. However, dependent remote operations such as creating a set of
nested remote directories DO require the previous operations to be persistent. That is
achieved using an existing dependency-tracking mechanism called Commit on Share (CoS).

Inode Migration Tool
With DNE Phase 1 remote directories, renaming a file or directory from one MDT to a
directory on another MDT would return a cross-device link (EXDEV) error to the caller, which
indicates that it needs to copy the whole file or directory to the new location, if possible, or
return an error to the user. While this was functional, it may cause a large amount of data
movement for large files. With DNE Phase 2, there is a new lfs mv user command that
allows users to migrate only the metadata portion of the file or directory (inode, layout, and
attributes) to a new MDT without copying any of the file data. The lfs mv command can
move whole directory trees in order to allow administrators to load-balance the namespace
onto new MDTs that are added to existing filesystems.

4

Component Patches

The patches containing this functionality are below, in order of planned landing:

Change # Subject
e88992a* LU-2430 mdt: Add global rename lock.
0209add* LU-2430 mdd: add lfs mv to migrate inode.
370de92* LU-3531 mdt: delete striped directory<
3c216b9* LU-3531 llite: fix "lfs getdirstripe" to show stripe info
7117ff4* LU-3531 mdc: release dir page cache after accessing
4e0c8ae* LU-3531 llite: move dir cache to MDC layer
7f6f701 LU-5420 mgc: MGC should retry for invalid import
3e28034 LU-3536 lod: Separate thandle to different layers.
07c9244 LU-3534 osp: move RPC pack from declare to execution phase
67fe9ef LU-3534 lod: record update for cross-MDT operation
31bb2c2 LU-3564 mdt: move last_rcvd obj update to LOD
9ec47fe LU-3564 LOD: add distribution id to identify updates
a603212 LU-3534 lod: write updates to update log
548a70e LU-3546 lod: cancel update log after all committed
9f71978 LU-3564 lod: update recovery thread
2e6dbe1 LU-3537 mdt: allow cross-MDT rename and link
59aa0b7 LU-3536 osp: send updates by separate thread
0fe99fb LU-3536 update: change sync updates to async update
* Patches are landed in master.

Functional/Unit tests

suite id title
sanity.sh all Run test suite with striped directories
sanityn.sh all Run test suite with striped directories
sanity.sh 17n Run e2fsck after migration
sanity.sh 230a Create remote directory and files under the remote directory
sanity.sh 230b Migrate directory
sanity.sh 230c Check directory accessibility if migration is failed
sanity.sh 230d Check migrate big directory
sanityn.sh 80 Migrate directory when contents are being opened

5

http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/sanityn.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/sanity.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/sanity.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/sanity.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/sanity.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/sanity.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/sanityn.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/sanity.sh
https://jira.hpdd.intel.com/browse/LU-3536
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=0fe99fbe523cafb88ac49f68d6746985babb3693
https://jira.hpdd.intel.com/browse/LU-3536
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=59aa0b7f580f367382f7b40069e193cea2ab05a7
https://jira.hpdd.intel.com/browse/LU-3537
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=2e6dbe1b73fe23cb9b55c73bb0eeeefff84e667a
https://jira.hpdd.intel.com/browse/LU-3564
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=9f71978cd45e094019bcf0f192f32c67da354bc9
https://jira.hpdd.intel.com/browse/LU-3546
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=548a70e6777b6eb29c411a7d29f67d5afb04913a
https://jira.hpdd.intel.com/browse/LU-3534
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=a60321286b4868f0ace8ce27b1dcd66c7fc2ebca
https://jira.hpdd.intel.com/browse/LU-3564
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=9ec47fe6b8002af28d1728dfce676231ff3414d5
https://jira.hpdd.intel.com/browse/LU-3564
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=31bb2c2a34adde7f7c588e8a81a2d1a4c22e3466
https://jira.hpdd.intel.com/browse/LU-3534
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=67fe9ef539b1663db15f02c59c3a4136857e51c9
https://jira.hpdd.intel.com/browse/LU-3534
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=07c92444ef71466ff74bf08c6e101c5ebf202118
https://jira.hpdd.intel.com/browse/LU-3536
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=3e2803484136512d070209ed5ccd3634ee607de2
https://jira.hpdd.intel.com/browse/LU-5420
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=7f6f701e55ddb3650c39490f73ed06cde35e080e
https://jira.hpdd.intel.com/browse/LU-3531
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=4e0c8aeb9460e20eb7be9011c24edca35e17340d
https://jira.hpdd.intel.com/browse/LU-3531
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=7117ff487e59737a3d375b8d8bf1464201b4ea05
https://jira.hpdd.intel.com/browse/LU-3531
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=3c216b9767ddbfd34b2633d6fe0a539281d73b73
https://jira.hpdd.intel.com/browse/LU-3531
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=370de927fc58fd3910fc527a00b5ff96da4a4278
https://jira.hpdd.intel.com/browse/LU-2430
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=0209add4a5099817111c8576afe930d1e2daef03
https://jira.hpdd.intel.com/browse/LU-2430
http://git.whamcloud.com/?p=fs/lustre-release.git;a=commit;h=e88992a3b5b9d9ba0a69883671f1b5888514e05d

suite id title
replay-single.sh 80a DNE: create remote dir, drop update rep from MDT0, fail MDT0
replay-single.sh 80b DNE: create remote dir, drop update rep from MDT0, fail MDT1
replay-single.sh 80c DNE: create remote dir, drop update rep from MDT1, fail MDT[0,1]
replay-single.sh 80d DNE: create remote dir, drop update rep from MDT1, fail 2 MDTs
replay-single.sh 80e DNE: create remote dir, drop MDT1 rep, fail MDT0
replay-single.sh 80f DNE: create remote dir, drop MDT1 rep, fail MDT1
replay-single.sh 80g DNE: create remote dir, drop MDT1 rep, fail MDT0, then MDT1
replay-single.sh 80h DNE: create remote dir, drop MDT1 rep, fail 2 MDTs
replay-single.sh 81a DNE: unlink remote dir, drop MDT0 update rep, fail MDT1
replay-single.sh 81b DNE: unlink remote dir, drop MDT0 update reply, fail MDT0
replay-single.sh 81c DNE: unlink remote dir, drop MDT0 update reply, fail MDT0,MDT1
replay-single.sh 81d DNE: unlink remote dir, drop MDT0 update reply, fail 2 MDTs
replay-single.sh 81e DNE: unlink remote dir, drop MDT1 req reply, fail MDT0
replay-single.sh 81f DNE: unlink remote dir, drop MDT1 req reply, fail MDT1
replay-single.sh 81g DNE: unlink remote dir, drop req reply, fail M0, then M1
replay-single.sh 81h DNE: unlink remote dir, drop request reply, fail 2 MDTs
replay-single.sh 110a DNE: create striped dir, fail MDT1 and client
replay-single.sh 110b DNE: create striped dir, fail MDT2 and client
replay-single.sh 110c DNE: create striped dir, uncommit on MDT1, fail MDT1/MDT2
replay-single.sh 110d DNE: create striped dir, uncommit on MDT2, fail MDT1/MDT2
replay-single.sh 111a DNE: unlink striped dir, uncommit on MDT1 fail MDT1 and client
replay-single.sh 111b DNE: unlink striped dir, uncommit on MDT2 fail MDT2 and client
replay-single.sh 111c DNE: unlink striped dir, uncommit on MDT1, fail MDT1/MDT2
replay-single.sh 111d DNE: unlink striped dir, uncommit on MDT2, fail MDT1/MDT2
replay-single.sh 112a DNE: cross MDT rename, fail MDT1 and client
replay-single.sh 112b DNE: cross MDT rename, fail MDT2 and client

6

http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh
http://git.whamcloud.com/fs/lustre-release.git/blob/HEAD:/lustre/tests/replay-single.sh

Conclusion
Implementation has been completed according to the agreed criteria. This new functionality
allows both the capacity and performance of metadata operations to scale with the addition
of metadata servers to an existing filesystem, as well as introducing some important
functionality for administrators updating existing single-MDT filesystems to DNE.

7

