Milestone Completion for the
Parallel Directory Operations Subproject on the
Lustre File System Checker Project of the
SFS-DEV-001 contract.

Revision History

Date Revision Author
12/15/2011 Original R. Henwood

Table of Contents

Multiple RPC service threads to operate on a single directory without
contending on a single lock protecting the underlying directory in the Idiskfs
LTSRS VA (=T o £ PP

Introduction

The following milestone completion document applies to Subproject 1.2 - Parallel
Directory Operations subproject within the OpenSFS Lustre Development contract
SFS-DEV-001 signed 7/30/2011.

Subproject Description

Per the contract, Implementation milestone is described as follows: “This
subproject allows multiple RPC service threads to operate on a single directory
without contending on a single lock protecting the underlying directory in the
Idiskfs file system. Single directory performance is one of the most critical use
cases for HPC workloads as many applications create a separate output file for
each task in a job, requiring hundreds of thousands of files to be created in a
single directory within a short window of time. Currently, both filename lookup
and file system-modifying operations such as create and unlink are protected with
a single lock for the whole directory.

This subproject will implement a parallel locking mechanism for single Idiskfs
directories, allowing multiple threads to do lookup, create, and unlink operations
in parallel. In order to avoid performance bottlenecks for very large directories, as
the directory size increases, the number of concurrent locks possible on a single
directory will also increase.”

Milestone Completion Criteria

Per the contract, Implementation milestone is described as follows: “Contractor
shall complete implementation and unit testing for the approved solution.
Contractor shall regularly report feature development progress including progress
metrics at project meetings and engineers shall share interim unit testing results
as they are available. OpenSFS at its discretion may request a code review.
Completion of the implementation phase shall occur when the agreed to solution
has been completed up to and including unit testing and this functionality can be
demonstrated on a test cluster. Code Reviews shall include:

a. Discussion led by Contractor engineer providing an overview of Lustre
source code changes

b. Review of any new unit test cases that were developed to test
changes

Location of Subproject Code changes
Complete code is available at:

http://review.whamcloud.com/#change,375

Commit at which code completed Milestone review by Senior and Principal
Engineer at:

http://git.whamcloud.com/?p=fs%2Flustre-
release.git;a=commit;h=19223651ed250966c0445¢c91dc91a5b9131dec35

Subproject Feature Confirmation

Multiple RPC service threads to operate on a single directory without contending on a
single lock protecting the underlying directory in the Idiskfs file system

Results from code runs was presented to the community at the OpenSFS Lustre
Pavilion SC11. This presentation is available from the OpenSFS site and is included
in Appendix 1.

The results included in Appendix 2 provide a detailed description of the
completion of unit tests and benchmarks.

Conclusion
Implementation has been completed according to the agreed criteria.

http://git.whamcloud.com/?p=fs%2Flustre-release.git;a=commit;h=19223651ed250966c0445c91dc91a5b9131dec35
http://git.whamcloud.com/?p=fs%2Flustre-release.git;a=commit;h=19223651ed250966c0445c91dc91a5b9131dec35

Appendix 1

whamcloud

Parallel Directory Operations
of Lustre

Liang Zhen
Whamcloud, Inc.
liang@whamcloud.com

whamcloud
How Lustre protects directory on 1.8.x

e A d|rectory is protected by a single LDLM lock

It works just like an expensive rw_semaphore for directory
operations

— By default we have max to 512 service threads to handle metadata
requests, but some customers require more than 512 threads

— Assume all threads are waiting on a single lock

» Using VFS interface to access backend
filesystem (ldiskfs)

- VFS APIs always take per-inode lock i_mutex to protect tree
topology
— On Lustre 1.8.* or earlier versions, directory tree topology is _not_

really protected by i_mutex because operations have already been
serialized by LDLM lock

whamcloud

How Lustre protects directory on 2.x
* PDO IdIm lock

- For example

create/unlink will talee CW lock on directory, PW lodk on name entry
- Parallelized operations for file creation

Chiject creation on backend filesystem

Permission checl

MName entry Loolwup

CI (Object index) operations

Creation of OST okJectL
- Performance increased

* No VFS on MDS stack

- VFS is replaced by MDD/OSD
Directly access backend filasystem

- NMName entry operations are still serialized by rw_semaphore in OSD
Mame entry insert
MName entry remove
MName entry loolkup (READ)
They are expensive

whamcloud
Operations on htree based directory

* probe htree-path

» Insert name-entry to DE-block

*» Remove name-entry from DE-block
» Iterate over all DE-blocks

» Split DE-block

* Split DX-block

* Grow tree depth
— Support N-level htree

* How to parallelize these operations?

— No loss in performance of FFP
— w/fo rewriting htree directory of Idiskfs

whamcloud

Protecting htree dir by htree-lock (1/2)

* preliminary idea
— Child-lock only protects DE-block
Search/insert/remove entry from DE-block
— Tree-lock protect all other operations
Probe htree-path
split DE-block
split DX-block
grow tree depth
— However
split DE-block for each ~100 creation

— Block size is 4K, each entry has name string + extra, so bytes of
each entry ~= 40byets, and each DE-block can fit in ~100 entries

We have hundreds or thousands service threads

— Always some threads want to exclusively lock the tree because
they need to split DE-block

Performance results are not cool enough

Graphs

mds_survey create

180000
160000
140000
120000
1"}

#oo000
B

g
Zeoo00

-

60000
40000
20000

o

i 2 4 B 1le 22 e4 12B 256 5121024

number of threads

master (HD journal)
—B-master (ramdisk journal)

POO (HD journal)

PDO (ramdisk journal)

PDO + multi-OIs (HD journal)
~8—-pPD0O + multi-OIs (ramdisk journal)

580000
b=

whamcloud

mds_survey unlink
180000
160000
140000

120000

‘i!LOO ooo

d

s0000

40000

e

32 B4 128 256 5121024

20000

]
1 2 4 B 16

number of threads

master (HD journal)
—B—master (ramdiskjournal)

PO (HD journal)

PR O (ramdiskjournal)

PDO + rmulti-OIs (HD journal)
—8—PDO + multi-OIs (ramdisk journal)

Appendix 2

whamcloud

Technical White Paper
Movember 2011

Lustre Parallel Directory Operations
By Liang Zhen, Bryon Meitzel

Concurrent operations within a single ext4 file system directory are slow due
to serialization caused by coarse-grained locking, Whameloud has achieved
significant perform ance improvements by modifying the ext$ locking
granularity to allow parallel operations within a single directory.

is modified.
= Reduce thread context switch (sleep/wakeup) delays caused by
contention on the single lock,

PDO Design

The Lustre service 1diskfs uses a hashed tree (HTree) indaxing method to
organize and locate directory entries, Each directory is protected by a single
mutex lock, Although this single-lock protection strategy is simple to
understand and implement, it creates a perfformance bottleneck because
directory operations must obtain and hold the lock for the duration of the
operation,

PDO implements a new locking mechanism that allows multiple threads to
concurrently search or modify directory entries safely in the HTree, With
PDO, MDS service threads can process, in parallel, multiple create, lookup,
and unlink reguests in the shared directory. Users will see performance
improvement for these commonly performed operations,

Mote that some applicatons may not see the benefit of PDO if the files being
accessed are striped across many ©STs. In this case, the overhead on
shared file operations with widely striped files will mask the gain of the
parallelized operations.

PD O is associated with the 1diskfs component of the Lustre file system,
which is responsible for storing data to disk and is part of the application
stack that a user assumes is completely reliable. It is important that the
performance gain for multi-threaded operations not come at the cost of
degrading the performance of single-thread operations.

The new PDO-related code will be freely licensed under the GNU GPL. To be
of value to the community, it is essential that it be easy to maintain.

PDO Requirements

The requirements for PDO are described below, which will provide a number
of benefits to Lustre users with applications that perform highly concurrent
m etadata operations.

No performance loss for small directory operations

Implemernting HTree directories with parallel directory operations provides
optimal performance for large directories. However, within a directory, the
minimum unit of parallelism is a single directory block (on the order of 50-
100 files, depending on filename length). With PDO, performance will not
scale for modifications within a single directory block, but PDO must neot
degrade performance for small directory operations.

No performance regressions

To be useful in practice, any new locking mechanism should maintain or
reduce resource consumption compared to the previous mechanism. PDO
perform ance for single application threads must be simil ar to single threaded
performance without PDO,

Easy to maintain

The existing HTree implementation is well tested and in common usage. To
maintain this state, the PDO implementat on must minimize in-line changes
and maximize ease of maintenance. Thus, PDC must not significantdy
restructure the current 1disk £fs HTree implementation.

Graceful fallback when calling 1diskfs from the Linux virtual file system (VFS)

If 1disk£s is called directly from WFS rather than from Lustre, htree-lock
will be set to NULL and 1disk£s will assume the directory is well protected
by the mutex mechanism in WFS. This behavior makes the PDO version of
ldiskfs gracefully degrade to single directory operations when accessed via
the WFS interface (such as when ldiskfs is used to mount the MDT locally].

N-level HTree

Very large directories can contain many millions of files, Currenty, the
ldiskfs HTree structure has only two levels and can accommodate at most
about 15 million files, To enable PDO changes to the HTree, the 1diskfs
implementation will be enhanced to support an M-level HTree and larger
directories, This feature is not in the requirements of PDO, but has been
included in scope as it is judged by OpensFs and Whamcloud to be a
worthwhil e addition to PDO waorl,

Big buffer LRU

The feast recently used (LRU) buffer is a per-CPU cache used in Linuwg for
fast searching of buffers. The default LRU size is 8. This default value is too
small for Lustre to support an N-level HTree for very large directories, The
purging of active buffers of this size would significantly degrade performance
due to the slow and expensive buffer searching path that would need to be
traversed, To avoid this scenario, an additonal patch to configure the LRU
buffer size with a default value of 16 will be provided.

Performance

The PDO capability has been extensively tested, including unit testing on a
single-machine and large cluster performance testing. Figure 1 shows the
results for open/create operations in a single directory on modest hardware.
This test was run using the nds_survey tool, which simulates metadata
traffic at the metadata target (MDT) layer of the MDS software stack. These
results are useful for comparing the performance of Lustre prior to
implementing the PDO feature to Lustre with the PD O feature . The test
equipment for this setup included:

= Kernel: 2.6.18 rhel5, Lustre 2.1+

« CPU: I7 processor, 24G memaory

= HDD: WD1002FAEX 1TB 7200 RPM 64MB cache
* SSD: Crucial RealSSD C300 Series 128GE

aoooo

E00DO - . & ,
=70000 . == PO (s ing HD journaly
EB[‘DDD L
Eﬁ[‘.ﬂﬂﬂ
40000 PO (using S50 Journaly

Eﬂmﬂﬂ % e POr (s ing S50 Journal and
520000 [£1a]"%]

~ 10000

=p==Np PO (using SSD journal)

a3z G4 128 256 512 1024
threads

Conclusion

Whamcloud is cortinuing to make investments in improving Lustre
performance in various areas in the code base, PDO is an excellent example
of these improvements, This feature is targeted for the Lustre 2.2 release
which will be available in the first half of 2012,

Copyright & 20301 by Wham owd Ine. Allrights msered.
‘Wha me loud, Inc ., 696 5an Ramon valkey Bivd , Suite 261, Danville, CA 34526

whamcloud Phone +1835-2728557 Email: info @ whame lo ud .com

